Synthesis of Heterocycles from Arylation Products of Unsaturated Compounds: XIII.* 5-R ${ }^{1}$-Benzyl-2-(\mathbf{R}^{2}-2-pyridylimino)thiazolidin-4-ones

V. S. Matiichuk, N. D. Obushak, and V. M. Tsyalkovskii
Ivan Franko L'viv National University, ul. Kirilla i Mefodiya 6, L'viv, 79005 Ukraine
e-mail: obushak@in.lviv.ua

Received November 16, 2004

Abstract

Meerwein reactions of arenediazonium bromides with methyl and ethyl acrylates gave 3-aryl-2bromopropionic acid esters which were subjected to cyclocondensation with N-(2-pyridyl)- and N-(6 -methyl-2pyridyl)thioureas to obtain 5-R ${ }^{1}$-benzyl-2-($\mathrm{R}^{2}-2$-pyridylimino)thiazolidin-4-ones. The latter were shown to exist in solution as E isomers of the imino form.

The thiazolidine ring is a promising and effective structural fragment for the design of biologically active compounds [2-4]. Methods of synthesis of combinatorial libraries of 4-thiazolidinone derivatives have been developed [5-7]. In the recent time, 5-R-benzyl-thiazolidine-2,4-diones attract increased interest, and some compounds of this series have already been introduced into medical practice as antidiabetic agents [8-11]. By contrast, 2-imino derivatives of 4-thiazolidinone have been studied to a lesser extent, despite the possibility for introducing an additional pharmacophoric fragment into the 2 -position. A probable reason is the limited set of convenient methods for the synthesis of such compounds with various substituents in both the thiazolidine ring and the imino fragment. A general procedure for the synthesis of 2-iminothia-zolidin-4-ones is based on cyclocondensation of monoand disubstituted thioureas with α-halo acids and their esters [2,12]. However, the application of this procedure is limited due to the fact that the cyclization is selective only when the nitrogen atoms in thioureas are characterized by considerably different nucleophilicities [13] or when other structural factors are favorable (e.g., hydrogen bond formation) [14].

5-Benzyl-2-iminothiazolidin-4-ones can be prepared by reaction of 3-aryl-2-bromopropionic acid esters with thiourea [15, 16]. In the present work we made an attempt to synthesize 5-benzylthiazolidin-4-ones containing a 2-pyridylimino group in position 2 . We

[^0]found that methyl and ethyl 3-aryl-2-bromopropionates IIa-IIr react with N-(2-pyridyl)thioureas IIIa and IIIb to give the corresponding $5-\mathrm{R}^{1}$-benzyl-2-($\mathrm{R}^{2}-2-$ pyri-dylimino)thiazolidin-4-ones IVa-IVp and Va-Ve (Scheme 1). The reactions were carried out by heating the reactants for a short time in alcohol in the presence of a base. No elimination of hydrogen bromide from esters IIa-IIr (with formation of cinnamic acid derivatives) occurred under these conditions. Compounds IVa-IVp and Va-Ve were isolated in high yields as colorless crystalline substances which were sparingly soluble in alcohol, dioxane, and DMF. It should be noted that some 2-(2-pyridylimino)thiazolidin-4-ones were found to exhibit antibacterial activity [13].

Esters IIa-IIr were prepared by reaction of arenediazonium bromides Ia-Ir with methyl or ethyl acrylate according to Meerwein [17]. The reactions were exothermic, and they were carried out at room temperature or on slight heating. Compounds IIa-IIr can be distilled under reduced pressure; they were isolated as light yellow liquids or crystalline substances. N-(2-Pyridyl)thioureas IIIa and IIIb were synthesized by the known method [18] from benzoyl isothiocyanate (VI) and 2-aminopyridines VIIa and VIIb.

2-Aryliminothiazolidin-4-ones, which are structurally related to compounds IVa-IVp and $\mathbf{V a}-\mathbf{V e}$, are known to exist in solution as mixtures of amino and imino tautomers, and the imino form gives rise to Z, E isomerism [16, 19-21]. According to the ${ }^{1} \mathrm{H}$ NMR data, thiazolidinones IVa-IVp and Va-Ve exist in solution as one isomer of the imino form. This conclu-

Scheme 1.

IIIa, IIIb
IVa-IVp, Va-Ve

$\mathbf{I}, \mathrm{R}^{1}=2-\mathrm{Me}(\mathbf{a}), 4-\mathrm{F}(\mathbf{b}), 2-\mathrm{Cl}(\mathbf{c}), 3-\mathrm{CF}_{3}(\mathbf{d}), 3-\mathrm{NO}_{2}(\mathbf{e}), 2,4-\mathrm{Cl}_{2}(\mathbf{f}), 2,5-\mathrm{Cl}_{2}(\mathbf{g}), 4-\mathrm{Me}-3-\mathrm{Cl}(\mathbf{h}), \mathrm{H}(\mathbf{i}), 3-\mathrm{Me}(\mathbf{j}), 4-\mathrm{Me}(\mathbf{k}), 4-\mathrm{MeO}(\mathbf{l})$, $3-\mathrm{Cl}(\mathbf{m}), 4-\mathrm{Cl}(\mathbf{n}), 4-\mathrm{Br}(\mathbf{o}), 4-\mathrm{EtO}(\mathbf{p}), 2,3-\mathrm{Cl}_{2}(\mathbf{q}), 3,4-\mathrm{Cl}_{2}(\mathbf{r}) ; \mathbf{I I}, \mathrm{R}^{2}=\mathrm{Me}, \mathrm{R}^{1}=2-\mathrm{Me}(\mathbf{a}), 4-\mathrm{F}(\mathbf{b}), 2-\mathrm{Cl}(\mathbf{c}), 3-\mathrm{CF}_{3}(\mathbf{d}), 3-\mathrm{NO}_{2}(\mathbf{e})$, $2,4-\mathrm{Cl}_{2}(\mathbf{f}), 2,5-\mathrm{Cl}_{2}(\mathbf{g}), 4-\mathrm{Me}-3-\mathrm{Cl}(\mathbf{h}) ; \mathrm{R}^{2}=\mathrm{Et}, \mathrm{R}^{1}=\mathrm{H}(\mathbf{i}), 3-\mathrm{Me}(\mathbf{j}), 4-\mathrm{Me}(\mathbf{k}), 4-\mathrm{MeO}(\mathbf{l}), 3-\mathrm{Cl}(\mathbf{m}), 4-\mathrm{Cl}(\mathbf{n}), 4-\mathrm{Br}(\mathbf{o}), 4-\mathrm{EtO}(\mathbf{p})$, $2,3-\mathrm{Cl}_{2}(\mathbf{q}), 3,4-\mathrm{Cl}_{2}(\mathbf{r}) ;$ III, VII, $\mathrm{R}^{3}=\mathrm{H}(\mathbf{a}), 6-\mathrm{Me}(\mathbf{b}) ; \mathbf{I V}, \mathrm{R}^{3}=\mathrm{H}, \mathrm{R}^{1}=\mathrm{H}(\mathbf{a}), 2-\mathrm{Me}(\mathbf{b})$, 3-Me(c), 4-Me(d), 4-MeO(e), 4-EtO (f), $4-\mathrm{F}(\mathbf{g}), 2-\mathrm{Cl}(\mathbf{h}), 3-\mathrm{Cl}(\mathbf{i}), 4-\mathrm{Cl}(\mathbf{j}), 4-\mathrm{Br}(\mathbf{k}), 3-\mathrm{CF}_{3}(\mathbf{l}), 3-\mathrm{NO}_{2}(\mathbf{m}), 2,3-\mathrm{Cl}_{2}(\mathbf{n}), 2,5-\mathrm{Cl}_{2}(\mathbf{o}), 3,4-\mathrm{Cl} 2(\mathbf{p}) ; \mathbf{V}, \mathrm{R}^{3}=\mathrm{Me}, \mathrm{R}^{1}=\mathrm{H}(\mathbf{a})$, $3-\mathrm{CF}_{3}(\mathbf{b}), 2,4-\mathrm{Cl}_{2}(\mathbf{c}), 3,4-\mathrm{Cl}_{2}(\mathbf{d}), 3-\mathrm{Cl}-4-\mathrm{Me}(\mathbf{e})$.
sion is confirmed by comparison of the spectral data of these compounds with those of 2-aryliminothiazolidin4 -ones [16]. Presumably, compounds IVa-IVp and $\mathbf{V a}-\mathbf{V e}$ are the corresponding E isomers, for spatial arrangement of the sulfur atom and nitrogen atom in the pyridine ring (as well as of the methyl group in the pyridine ring of $\mathbf{V a - V e}$) in the Z isomers is less favorable.

Thus accessible bromoarylation products IIa-IIr obtained from acrylic acid esters are convenient reagents for the synthesis of 4-thiazolidinone derivatives containing a substituted benzyl group in position 5 and a 2-pyridylimino substituent in position 2.

EXPERIMENTAL

The ${ }^{1} \mathrm{H}$ NMR spectra were recorded on Bruker DRX 500 (500 MHz ; compounds IIg, Va, Vb), Bruker AM-300 (300 MHz ; IIe, IIj-IIm, IIq, IIr, IVa, IVk, IVm), and Bruker WM-250 instruments (250 MHz ; IVc-IVe, IVh) using DMSO- d_{6} or DMSO- $d_{6}-\mathrm{CCl}_{4}$ (1:3) (IIg, Va, Vb) as solvent; the chemical shifts were measured relative to the residual proton signal of the solvent (DMSO, $\delta 2.50 \mathrm{ppm}$).

3-Aryl-2-bromopropionic acid esters IIa-IIr (general procedure). A solution of arenediazonium bromide Ia-Ir (prepared by diazotization of 0.2 mol of
the corresponding aromatic amine) was cooled to $0-$ $5^{\circ} \mathrm{C}$ and added dropwise under stirring to a solution of 0.22 mol of methyl or ethyl acrylate and 3 g of CuBr in 150 ml of acetone. The temperature was maintained in the range from 20 to $40^{\circ} \mathrm{C}$ so that nitrogen evolved at a rate of $2-3$ bubbles per second. When nitrogen no longer evolved, the mixture was diluted with 200 ml of water, and the organic phase was separated and dried over MgSO_{4}. The solvent was evaporated, and the residue was distilled under reduced pressure. Compounds III and IIn were described previously [15, 22].

Methyl 2-bromo-3-(2-methylphenyl)propionate (IIa). Yield 33%, bp $128^{\circ} \mathrm{C}(2 \mathrm{~mm}), n_{\mathrm{D}}^{20}=1.5416$. Found, \%: $\mathrm{Br} 31.01 . \mathrm{C}_{11} \mathrm{H}_{13} \mathrm{BrO}_{2}$. Calculated, \%: Br 31.08.

Methyl 2-bromo-3-(4-fluoropheny)propionate (IIb). Yield 40%, bp $113-114^{\circ} \mathrm{C}(2 \mathrm{~mm}), n_{\mathrm{D}}^{20}=1.5223$. Found, \%: C 46.25; H 3.90. $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{BrFO}_{2}$. Calculated, \%: C 46.00; H 3.86.

Methyl 2-bromo-3-(2-chlorophenyl)propionate (IIc). Yield 47%, bp $128-130^{\circ} \mathrm{C}(2 \mathrm{~mm}), n_{\mathrm{D}}^{20}=1.5548$. Found, $\%: \mathrm{Br}+\mathrm{Cl} 41.50 . \mathrm{C}_{10} \mathrm{H}_{10} \mathrm{BrClO}_{2}$. Calculated, \%: $\mathrm{Br}+\mathrm{Cl} 41.56$.

Methyl 2-bromo-3-(3-trifluoromethylphenyl)propionate (IId). Yield 42%, bp $118-120^{\circ} \mathrm{C}(2 \mathrm{~mm})$, $n_{\mathrm{D}}^{20}=1.4922$. Found, \%: C 42.34; H 3.08. $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{BrF}_{3} \mathrm{O}_{2}$. Calculated, \%: C 42.47; H 3.24 .

Methyl 2-bromo-3-(3-nitrophenyl)propionate (IIe). Yield $46 \%, \mathrm{mp} 101-102^{\circ} \mathrm{C}$ (from ethanol) [16]. ${ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: 3.33 d.d $\left(1 \mathrm{H}, \mathrm{CH}_{2}, J=\right.$ $14.0,8.1 \mathrm{~Hz}), 3.57 \mathrm{~d} . \mathrm{d}\left(1 \mathrm{H}, \mathrm{CH}_{2}, J=14.0,6.6 \mathrm{~Hz}\right)$, $3.73 \mathrm{~s}(3 \mathrm{H}, \mathrm{OMe}), 4.80 \mathrm{t}(1 \mathrm{H}, \mathrm{CH}), 7.59 \mathrm{t}\left(1 \mathrm{H}, \mathrm{H}_{\text {arom }}\right)$, $7.73 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 8.11 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 8.20 \mathrm{~s}$ ($1 \mathrm{H}, \mathrm{H}_{\text {arom }}$).

Methyl 2-bromo-3-(2,4-dichlorophenyl)propionate (IIf). Yield 59\%, bp $168-171^{\circ} \mathrm{C}(2 \mathrm{~mm})$, mp $74-$ $75^{\circ} \mathrm{C}$ (from ethanol). Found, $\%: \mathrm{Br}+\mathrm{Cl} 48.20$. $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{BrCl}_{2} \mathrm{O}_{2}$. Calculated, \%: $\mathrm{Br}+\mathrm{Cl} 48.34$.

Methyl 2-bromo-3-(2,5-dichlorophenyl)propionate (IIg). Yield 48%, bp $172-174^{\circ} \mathrm{C}(2 \mathrm{~mm})$, $\mathrm{mp} 61^{\circ} \mathrm{C}$ (from ethanol). ${ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm : 3.35 d.d $\left(1 \mathrm{H}, \mathrm{CH}_{2}, J=14.4,8.2 \mathrm{~Hz}\right), 3.51$ d.d $(1 \mathrm{H}$, $\left.\mathrm{CH}_{2}, J=14.4,7.2 \mathrm{~Hz}\right), 3.75 \mathrm{~s}(3 \mathrm{H}, \mathrm{OMe}), 4.63 \mathrm{t}$ $(1 \mathrm{H}, \mathrm{CH}), 7.29 \mathrm{d.d}\left(1 \mathrm{H}, \mathrm{H}_{\text {arom }},{ }^{4} J=2.6,{ }^{3} J=8.6 \mathrm{~Hz}\right)$, $7.36-7.40 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{H}_{\text {arom }}\right)$. Found, $\%: \mathrm{Br}+\mathrm{Cl} 48.27$. $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{BrCl}_{2} \mathrm{O}_{2}$. Calculated, \%: $\mathrm{Br}+\mathrm{Cl} 48.34$.

Methyl 2-bromo-3-(3-chloro-4-methylphenyl)propionate (IIh). Yield 29%, bp $144-146^{\circ} \mathrm{C}(2 \mathrm{~mm})$, $n_{\mathrm{D}}^{20}=1.5521$. Found, $\%: \mathrm{Br}+\mathrm{Cl} 39.41 . \mathrm{C}_{11} \mathrm{H}_{12} \mathrm{BrClO}_{2}$. Calculated, \%: $\mathrm{Br}+\mathrm{Cl} 39.56$.

Ethyl 2-bromo-3-(3-methylphenyl)propionate (IIj). Yield $41 \%, \mathrm{bp} 138^{\circ} \mathrm{C}(2 \mathrm{~mm}), n_{\mathrm{D}}^{20}=1.5333$ [15]. ${ }^{1} \mathrm{H}$ NMR spectrum, $\delta, \mathrm{ppm}: 1.21 \mathrm{t}(3 \mathrm{H}, \mathrm{Me}), 2.30 \mathrm{~s}$ ($3 \mathrm{H}, \mathrm{Me}$), 3.14 d.d ($1 \mathrm{H}, \mathrm{CH}_{2}, J=14.1,7.8 \mathrm{~Hz}$), 3.35 d.d $\left(1 \mathrm{H}, \mathrm{CH}_{2}, J=14.1,8.7 \mathrm{~Hz}\right), 4.13 \mathrm{q}(2 \mathrm{H}$, $\left.\mathrm{OCH}_{2}\right), 4.54 \mathrm{t}(1 \mathrm{H}, \mathrm{CH}), 6.98-7.20 \mathrm{~m}\left(4 \mathrm{H}, \mathrm{H}_{\text {arom }}\right)$.

Ethyl 2-bromo-3-(4-methylphenyl)propionate (IIk). Yield 37%, bp $149^{\circ} \mathrm{C}(2 \mathrm{~mm}), n_{\mathrm{D}}^{20}=1.5343$ [15]. ${ }^{1} \mathrm{H}$ NMR spectrum, $\delta, \mathrm{ppm}: 1.21 \mathrm{t}(3 \mathrm{H}, \mathrm{Me}), 2.30 \mathrm{~s}$ ($3 \mathrm{H}, \mathrm{Me}$), 3.14 d.d ($1 \mathrm{H}, \mathrm{CH}_{2}, J=13.8,6.6 \mathrm{~Hz}$), $3.34 \mathrm{~d} . \mathrm{d}\left(1 \mathrm{H}, \mathrm{CH}_{2}, J=13.8,9.0 \mathrm{~Hz}\right), 4.12 \mathrm{~d} . \mathrm{q}$ $\left(2 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.52 \mathrm{t}(1 \mathrm{H}, \mathrm{CH}), 7.07 \mathrm{~d}\left(2 \mathrm{H}, \mathrm{H}_{\text {arom }}, J=\right.$ $7.8 \mathrm{~Hz}), 7.11 \mathrm{~d}\left(2 \mathrm{H}, \mathrm{H}_{\text {arom }}\right)$.

Ethyl 2-bromo-3-(4-methoxyphenyl)propionate (III). Yield 47%, bp $136-138^{\circ} \mathrm{C}(2 \mathrm{~mm}), n_{\mathrm{D}}^{20}=1.5335$ [16]. ${ }^{1} \mathrm{H}$ NMR spectrum, $\delta, \mathrm{ppm}: 1.21 \mathrm{t}(3 \mathrm{H}, \mathrm{Me})$, 3.12 d.d $\left(1 \mathrm{H}, \mathrm{CH}_{2}, J=13.8,8.1 \mathrm{~Hz}\right), 3.31$ d.d $(1 \mathrm{H}$, $\mathrm{CH}_{2}, J=13.8,9.3 \mathrm{~Hz}$), $3.75 \mathrm{~s}(3 \mathrm{H}, \mathrm{MeO}), 4.12 \mathrm{~d} . \mathrm{q}$ $\left(2 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.51 \mathrm{t}(1 \mathrm{H}, \mathrm{CH}), 6.80 \mathrm{~d}\left(2 \mathrm{H}, \mathrm{H}_{\text {arom }}, J=\right.$ $9.0 \mathrm{~Hz}), 7.14 \mathrm{~d}\left(2 \mathrm{H}, \mathrm{H}_{\text {arom }}\right)$.

Ethyl 2-bromo-3-(3-chlorophenyl)propionate (IIm). Yield 43%, bp $141-143^{\circ} \mathrm{C}(2 \mathrm{~mm}), n_{\mathrm{D}}^{20}=$ 1.5391. ${ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: $1.22 \mathrm{t}(3 \mathrm{H}, \mathrm{Me})$, 3.19 d.d ($1 \mathrm{H}, \mathrm{CH}_{2}, J=14.1,7.2 \mathrm{~Hz}$), 3.40 d.d (1 H , $\left.\mathrm{CH}_{2}, J=14.1,8.1 \mathrm{~Hz}\right), 4.15$ d.q ($2 \mathrm{H}, \mathrm{OCH}_{2}$), 4.65 t $(1 \mathrm{H}, \mathrm{CH}), 7.18-7.35 \mathrm{~m}\left(4 \mathrm{H}, \mathrm{H}_{\text {arom }}\right)$. Found, $\%: \mathrm{Br}+\mathrm{Cl}$ 39.61. $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{BrClO}_{2}$. Calculated, \%: $\mathrm{Br}+\mathrm{Cl} 39.56$.

Ethyl 2-bromo-3-(4-bromophenyl)propionate (IIO). Yield 53%, bp $162-165^{\circ} \mathrm{C}(2 \mathrm{~mm}), n_{\mathrm{D}}^{20}=1.5574$. Found, \%: Br 47.27. $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{Br}_{2} \mathrm{O}_{2}$. Calculated, \%: Br 47.56.

Ethyl 2-bromo-3-(4-ethoxyphenyl)propionate (IIp). Yield 45%, bp $151-153^{\circ} \mathrm{C}(2 \mathrm{~mm}), \mathrm{mp} 28-30^{\circ} \mathrm{C}$ (from ethanol). Found, \%: C 51.72; H 5.63. $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{BrO}_{3}$. Calculated, \%: C 51.84; H 5.69.

Ethyl 2-bromo-3-(2,3-dichlorophenyl)propionate (IIq). Yield 56%, bp $178-180^{\circ} \mathrm{C}(2 \mathrm{~mm}), n_{\mathrm{D}}^{20}=1.5542$. ${ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: $1.23 \mathrm{t}(3 \mathrm{H}, \mathrm{Me}), 3.40 \mathrm{~d} . \mathrm{d}$ $\left(1 \mathrm{H}, \mathrm{CH}_{2}, J=14.6,8.1 \mathrm{~Hz}\right), 3.57$ d.d $\left(1 \mathrm{H}, \mathrm{CH}_{2}, J=\right.$ $14.6,7.8 \mathrm{~Hz}), 4.17 \mathrm{~d} . \mathrm{q}\left(2 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.65 \mathrm{t}(1 \mathrm{H}, \mathrm{CH})$, $7.24-7.35 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 7.48 \mathrm{~d} . \mathrm{d}\left(1 \mathrm{H}, \mathrm{H}_{\text {arom }},{ }^{4} J=1.5\right.$, ${ }^{3} J=7.5 \mathrm{~Hz}$). Found, $\%: \mathrm{Br}+\mathrm{Cl} 46.08 . \mathrm{C}_{11} \mathrm{H}_{11} \mathrm{BrCl}_{2} \mathrm{O}_{2}$. Calculated, \%: $\mathrm{Br}+\mathrm{Cl} 46.26$.

Ethyl 2-bromo-3-(3,4-dichlorophenyl)propionate (IIr). Yield 53%, bp $175-177^{\circ} \mathrm{C}(2 \mathrm{~mm}), n_{\mathrm{D}}^{20}=1.5530$. ${ }^{1} \mathrm{H}$ NMR spectrum, $\delta, \mathrm{ppm}: 1.23 \mathrm{t}(3 \mathrm{H}, \mathrm{Me}), 3.17 \mathrm{~d} . \mathrm{d}$ $\left(1 \mathrm{H}, \mathrm{CH}_{2}, J=13.8,6.9 \mathrm{~Hz}\right), 3.39$ d.d $\left(1 \mathrm{H}, \mathrm{CH}_{2}, J=\right.$ $13.8,7.2 \mathrm{~Hz}), 4.16 \mathrm{~d} . \mathrm{q}\left(2 \mathrm{H}, \mathrm{OCH}_{2}\right), 4.68 \mathrm{t}(1 \mathrm{H}, \mathrm{CH})$, $7.24 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}_{\text {arom }}, J=8.1 \mathrm{~Hz}\right), 7.46 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}_{\text {arom }}, J=\right.$ $8.1 \mathrm{~Hz}), 7.51 \mathrm{~s}\left(1 \mathrm{H}, \mathrm{H}_{\text {arom }}\right)$. Found, $\%: \mathrm{Br}+\mathrm{Cl} 46.12$. $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{BrCl}_{2} \mathrm{O}_{2}$. Calculated, \%: $\mathrm{Br}+\mathrm{Cl} 46.26$.

5-R-Benzyl-2-(2-pyridylimino)thiazolidin-4-ones IVa-IVp (general procedure). Ester II, 0.01 mol , and pyridine, 1 ml , were added to a solution of 0.01 mol (1.53 g) of N-(2-pyridyl)thiourea (IIIa) in 10 ml of ethanol. The mixture was heated for 0.5 h under reflux and cooled, and the precipitate was filtered off and recrystallized from DMF-ethanol. Compounds Va-Ve were synthesized in a similar way using N-(6-methyl-2-pyridyl)thiourea (IIIb).

5-Benzyl-2-(2-pyridylimino)thiazolidin-4-one (IVa). Yield $73 \%, \mathrm{mp} 217-218^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: 3.00 d.d ($1 \mathrm{H}, \mathrm{CH}_{2}, J=14.1,10.2 \mathrm{~Hz}$), $3.43 \mathrm{~d} . \mathrm{d}$ $\left(1 \mathrm{H}, \mathrm{CH}_{2}, J=14.1,4.0 \mathrm{~Hz}\right), 4.54$ d.d $(1 \mathrm{H}, \mathrm{CH}), 7.10 \mathrm{t}$ ($2 \mathrm{H}, 3-\mathrm{H}, 5-\mathrm{H}$, pyridine), $7.22-7.34 \mathrm{~m}\left(5 \mathrm{H}, \mathrm{H}_{\text {arom }}\right.$), $7.78 \mathrm{t}(1 \mathrm{H}, 4-\mathrm{H}$, pyridine $), 8.34 \mathrm{~d}(1 \mathrm{H}, 6-\mathrm{H}$, pyridine $)$, 11.92 br.s ($1 \mathrm{H}, \mathrm{NH}$). Found, \%: C 63.44; H 4.55; N 15.02. $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{OS}$. Calculated, \%: C 63.58; H 4.62; N 14.83 .

5-(2-Methylbenzyl)-2-(2-pyridylimino)thiazoli-din-4-one (IVb). Yield 70%, mp $222.5-223.5^{\circ} \mathrm{C}$. Found, \%: C 64.86; H 4.79; N 14.12. $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{OS}$. Calculated, \%: C 64.62; H 5.08; N 14.13.

5-(3-Methylbenzyl)-2-(2-pyridylimino)thiazoli-din-4-one (IVc). Yield $69 \%, \mathrm{mp} 176-177^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR spectrum, $\delta, \mathrm{ppm}: 2.32 \mathrm{~s}(1 \mathrm{H}, \mathrm{Me}), 2.88$ d.d $\left(1 \mathrm{H}, \mathrm{CH}_{2}\right.$,
$J=14.5,10.1 \mathrm{~Hz}), 3.42$ d.d $\left(1 \mathrm{H}, \mathrm{CH}_{2}, J=14.5\right.$, $3.5 \mathrm{~Hz}), 4.34 \mathrm{~d} . \mathrm{d}(1 \mathrm{H}, \mathrm{CH}), 7.00-7.12 \mathrm{~m}\left(4 \mathrm{H}, \mathrm{H}_{\text {arom }}\right)$, $7.18 \mathrm{t}(2 \mathrm{H}, 3-\mathrm{H}, 5-\mathrm{H}$, pyridine $), 7.73 \mathrm{t}(1 \mathrm{H}, 4-\mathrm{H}$, pyridine), $8.31 \mathrm{~d}(1 \mathrm{H}, 6-\mathrm{H}$, pyridine), $11.90 \mathrm{br} . \mathrm{s}(1 \mathrm{H}, \mathrm{NH})$. Found, \%: C 64.88; H 5.01; N 13.95. $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{OS}$. Calculated, \%: C 64.62; H 5.08; N 14.13.

5-(4-Methylbenzy)-2-(2-pyridylimino)thiazoli-din-4-one (IVd). Yield 81\%, mp 242-243 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: $2.30 \mathrm{~s}(3 \mathrm{H}, \mathrm{Me}), 2.90$ d.d $\left(1 \mathrm{H}, \mathrm{CH}_{2}\right.$, $J=14.0,10.2 \mathrm{~Hz}), 3.39 \mathrm{~d} . \mathrm{d}\left(1 \mathrm{H}, \mathrm{CH}_{2}, J=14.0\right.$, $3.8 \mathrm{~Hz}), 4.32$ d.d ($1 \mathrm{H}, \mathrm{CH}$), $7.05 \mathrm{t}(2 \mathrm{H}, 3-\mathrm{H}, 5-\mathrm{H}$, pyridine), $7.09 \mathrm{~d}\left(2 \mathrm{H}, \mathrm{H}_{\text {arom }}, J=8.0 \mathrm{~Hz}\right), 7.15 \mathrm{~d}(2 \mathrm{H}$, $\left.\mathrm{H}_{\text {arom }}\right), 7.73 \mathrm{t}(1 \mathrm{H}, 4-\mathrm{H}$, pyridine $), 8.30 \mathrm{~d}(1 \mathrm{H}, 6-\mathrm{H}$, pyridine), 11.87 br.s ($1 \mathrm{H}, \mathrm{NH}$). Found, \%: C 64.83 ; H 5.34; N 14.20. $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{OS}$. Calculated, \%: C 64.62; H 5.08; N 14.13 .

5-(4-Methoxybenzyl)-2-(2-pyridylimino)thiazoli-din-4-one (IVe). Yield 77%, mp 208-210 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: 2.89 d.d $\left(1 \mathrm{H}, \mathrm{CH}_{2}, J=14.3\right.$, $10.1 \mathrm{~Hz}), 3.36$ d.d ($1 \mathrm{H}, \mathrm{CH}_{2}, J=14.3,3.6 \mathrm{~Hz}$), 3.75 s $(1 \mathrm{H}, \mathrm{MeO}), 4.31 \mathrm{~m}(1 \mathrm{H}, \mathrm{CH}), 6.83 \mathrm{~d}\left(2 \mathrm{H}, \mathrm{H}_{\text {arom }}, J=\right.$ $8.2 \mathrm{~Hz}), 7.06 \mathrm{t}(2 \mathrm{H}, 3-\mathrm{H}, 5-\mathrm{H}$, pyridine), $7.18 \mathrm{~d}(2 \mathrm{H}$, $\left.\mathrm{H}_{\text {arom }}\right), 7.73 \mathrm{t}(1 \mathrm{H}, 4-\mathrm{H}$, pyridine $), 8.31 \mathrm{~d}(1 \mathrm{H}, 6-\mathrm{H}$, pyridine), 11.87 br.s ($1 \mathrm{H}, \mathrm{NH}$). Found, \%: C 61.19; H 5.08; $\mathrm{N} 13.13 . \mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$. Calculated, \%: C 61.32; H 4.82; N 13.41 .

5-(4-Ethoxybenzyl)-2-(2-pyridylimino)thiazoli-din-4-one (IVf). Yield 67%, mp 207-208 ${ }^{\circ}$. Found, \%: C 62.48; H 5.08; N 12.63. $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$. Calculated, \%: C 62.37; H 5.23; N 12.83 .

5-(4-Fluorobenzyl)-2-(2-pyridylimino)thiazoli-din-4-one (IVg). Yield 72%, mp 234- $235^{\circ} \mathrm{C}$. Found, \%: C 59.69; H 4.17; N 14.20. $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{FN}_{3} \mathrm{OS}$. Calculated, \%: C 59.79; H 4.01; N 13.94.

5-(2-Chlorobenzyl)-2-(2-pyridylimino)thiazoli-din-4-one (IVh). Yield 65%, mp 217-218 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: 3.03 d.d $\left(1 \mathrm{H}, \mathrm{CH}_{2}, J=14.5\right.$, $10.2 \mathrm{~Hz}), 3.63 \mathrm{~d} . \mathrm{d}\left(1 \mathrm{H}, \mathrm{CH}_{2}, J=14.5,4.5 \mathrm{~Hz}\right), 4.39 \mathrm{~m}$ ($1 \mathrm{H}, \mathrm{CH}$), $7.02-7.14 \mathrm{~m}(2 \mathrm{H}, 3-\mathrm{H}, 5-\mathrm{H}$, pyridine), $7.25-$ $7.35 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 7.36-7.44 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 7.74 \mathrm{t}$ ($1 \mathrm{H}, 4-\mathrm{H}$, pyridine), $8.31 \mathrm{~d}(1 \mathrm{H}, 6-\mathrm{H}$, pyridine $)$, 12.03 br.s ($1 \mathrm{H}, \mathrm{NH}$). Found, \%: C 56.62; H 4.05; N 13.40. $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{ClN}_{3} \mathrm{OS}$. Calculated, \%: C 56.69; H 3.81; N 13.22.

5-(3-Chlorobenzyl)-2-(2-pyridylimino)thiazoli-din-4-one (IVi). Yield 69%, mp 192-193 ${ }^{\circ} \mathrm{C}$. Found, \%: C 56.65; H 3.96; N 13.12. $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{ClN}_{3} \mathrm{OS}$. Calculated, \%: C 56.69; H 3.81; N 13.22.

5-(4-Chlorobenzy)-2-(2-pyridylimino)thiazoli-din-4-one (IVj). Yield 75%, mp 239- $240^{\circ} \mathrm{C}$. Found,
\%: C 56.46; H 3.93; N 13.32. $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{ClN}_{3} \mathrm{OS}$. Calculated, \%: C 56.69; H 3.81; N 13.22.

5-(4-Bromobenzyl)-2-(2-pyridylimino)thiazoli-din-4-one (IVk). Yield 63%, mp $252-253^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: 3.02 d.d $\left(1 \mathrm{H}, \mathrm{CH}_{2}, J=14.2\right.$, $10.1 \mathrm{~Hz}), 3.38$ d.d $\left(1 \mathrm{H}, \mathrm{CH}_{2}, J=14.2,4.3 \mathrm{~Hz}\right)$, $4.53 \mathrm{~d} . \mathrm{d}(1 \mathrm{H}, \mathrm{CH}), 7.05-7.11 \mathrm{~m}(2 \mathrm{H}, 3-\mathrm{H}, 5-\mathrm{H}$, pyridine), $7.25 \mathrm{~d}\left(2 \mathrm{H}, \mathrm{H}_{\text {arom }}, J=8.0 \mathrm{~Hz}\right), 7.51 \mathrm{~d}(2 \mathrm{H}$, $\left.\mathrm{H}_{\text {arom }}\right), 7.79 \mathrm{t}(1 \mathrm{H}, 4-\mathrm{H}$, pyridine $), 8.33 \mathrm{~d}(1 \mathrm{H}, 6-\mathrm{H}$, pyridine), 11.98 br.s ($1 \mathrm{H}, \mathrm{NH}$). Found, \%: C 49.89; H 3.21; $\mathrm{N} 11.60 . \mathrm{C}_{15} \mathrm{H}_{12} \mathrm{BrN}_{3} \mathrm{OS}$. Calculated, \%: C 49.74; H 3.34; N 11.60.

2-(2-Pyridylimino)-5-(3-trifluoromethylbenzyl)-thiazolidin-4-one (IVI). Yield 79%, mp 204-205 ${ }^{\circ} \mathrm{C}$. Found, \%: C 54.98; H 3.40; N 11.94. $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{OS}$. Calculated, \%: C 54.70; H 3.44; N 11.96.

5-(3-Nitrobenzyl)-2-(2-pyridylimino)thiazolidin-4-one (IVm). Yield 75%, mp $231-232^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: 3.26 d.d ($1 \mathrm{H}, \mathrm{CH}_{2}, J=14.1,9.0 \mathrm{~Hz}$), 3.51 d.d $\left(1 \mathrm{H}, \mathrm{CH}_{2}, J=14.1,4.5 \mathrm{~Hz}\right), 4.63$ d.d $(1 \mathrm{H}$, $\mathrm{CH}), 7.11 \mathrm{t}(2 \mathrm{H}, 3-\mathrm{H}, 5-\mathrm{H}$, pyridine $), 7.61 \mathrm{t}(1 \mathrm{H}, 5-\mathrm{H}$, $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right), 7.72-7.81 \mathrm{~m}(2 \mathrm{H}, 4-\mathrm{H}$, pyridine, and $6-\mathrm{H}$, $\left.\mathrm{C}_{6} \mathrm{H}_{4}\right), 8.10 \mathrm{~d}\left(1 \mathrm{H}, 4-\mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right), 8.17 \mathrm{~s}\left(1 \mathrm{H}, 2-\mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right)$, $8.33 \mathrm{~d}(1 \mathrm{H}, 6-\mathrm{H}$, pyridine), 12.05 br.s $(1 \mathrm{H}, \mathrm{NH})$. Found, \%: C 54.83; H 3.83; N 16.99. $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}$. Calculated, \%: C 54.87; H 3.68; N 17.06.

5-(2,3-Dichlorobenzyl)-2-(2-pyridylimino)thiazo-lidin-4-one (IVn). Yield 81%, mp 264-265 ${ }^{\circ} \mathrm{C}$. Found, \%: C 51.38; H 2.97; N 12.09. $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{OS}$. Calculated, \%: C 51.15; H 3.15; N 11.93.

5-(2,5-Dichlorobenzyl)-2-(2-pyridylimino)thiazo-lidin-4-one (IVo). Yield 83%, mp $222-223^{\circ} \mathrm{C}$. Found, \%: C 51.01; H 3.11; N 12.11. $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{OS}$. Calculated, \%: C 51.15; H 3.15; N 11.93.

5-(3,4-Dichlorobenzyl)-2-(2-pyridylimino)thiazo-lidin-4-one (IVp). Yield 78%, mp 232- $233^{\circ} \mathrm{C}$. Found, \%: C 51.22; H 2.98; N 11.81. $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{OS}$. Calculated, \%: C 51.15; H 3.15; N 11.93.

5-Benzyl-2-(6-methyl-2-pyridylimino)thiazoli-din-4-one (Va). Yield 75%, mp $236-237^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: $2.44 \mathrm{~s}(3 \mathrm{H}, \mathrm{Me}), 2.97$ d.d $\left(1 \mathrm{H}, \mathrm{CH}_{2}\right.$, $J=13.4,10.4 \mathrm{~Hz}), 3.45 \mathrm{~d} . \mathrm{d}\left(1 \mathrm{H}, \mathrm{CH}_{2}\right), 4.16 \mathrm{~m}(1 \mathrm{H}$, CH), 6.83-6.90 m (2H, 3-H, 5-H, pyridine), 7.19$7.23 \mathrm{~m}\left(1 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 7.25-7.30 \mathrm{~m}\left(4 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 7.53-$ $7.59 \mathrm{~m}(1 \mathrm{H}, 4-\mathrm{H}$, pyridine). Found, \%: C 64.35; H 5.30; N 14.21. $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{OS}$. Calculated, \%: C 64.62; H 5.08; N 14.13 .

2-(6-Methyl-2-pyridylimino)-5-(3-trifluorometh-ylbenzyl)thiazolidin-4-one (Vb). Yield 72%, mp 242-
$243^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: $2.43 \mathrm{~s}(3 \mathrm{H}, \mathrm{Me})$, 3.09 d.d $\left(1 \mathrm{H}, \mathrm{CH}_{2}, J=14.0,9.2 \mathrm{~Hz}\right), 3.50$ d.d (1 H , $\left.\mathrm{CH}_{2}, J=14.0,3.4 \mathrm{~Hz}\right), 4.21 \mathrm{~m}(1 \mathrm{H}, \mathrm{CH}), 6.84-6.91 \mathrm{~m}$ $(2 \mathrm{H}, 3-\mathrm{H}, 5-\mathrm{H}$, pyridine $), 7.47-7.54 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{H}_{\text {arom }}\right)$, $7.54-7.59 \mathrm{~m}\left(2 \mathrm{H}, 4-\mathrm{H}\right.$, pyridine, $\left.\mathrm{H}_{\text {arom }}\right), 7.60 \mathrm{~s}$ $\left(1 \mathrm{H}, \mathrm{H}_{\text {arom }}\right), 11.90$ br.s $(1 \mathrm{H}, \mathrm{NH})$. Found, \%: C 56.06; H 3.70; $\mathrm{N} 11.68 . \mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{OS}$. Calculated, \%: C 55.88; H 3.86; N 11.50 .

5-(2,4-Dichlorobenzyl)-2-(6-methyl-2-pyridyl-imino)thiazolidin-4-one (Vc). Yield 80%, mp 273$274{ }^{\circ} \mathrm{C}$. Found, \%: C 52.21; H 3.50; N 11.64. $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{OS}$. Calculated, \%: C 52.47; H 3.58; N 11.47 .

5-(3,4-Dichlorobenzyl)-2-(6-methyl-2-pyridyl-

 imino)thiazolidin-4-one (Vd). Yield 79%, mp 258$259^{\circ} \mathrm{C}$. Found, $\%$: C 52.32; H 3.59; N 11.23 . $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{OS}$. Calculated, \%: C 52.47; H 3.58; N 11.47.5-(3-Chloro-4-methylbenzyl)-2-(6-methyl-2-pyridylimino)thiazolidin-4-one (Ve). Yield 76\%, $\mathrm{mp} 262-263^{\circ} \mathrm{C}$. Found, \%: C 59.03; H 4.48; N 12.25. $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{ClN}_{3} \mathrm{OS}$. Calculated, \%: C 59.04; H 4.66; N 12.15 .

REFERENCES

1. Obushak, N.D., Martyak, R.L., and Matiichuk, V.S., Russ. J. Org. Chem., 2005, vol. 41, p. 748.
2. Singh, S.P., Parmar, S.S., Raman, K., and Stenberg, V.I., Chem. Rev., 1981, vol. 81, p. 175.
3. Mashkovskii, M.D., Lekarstvennye sredstva (Drugs), Moscow: Novaya Volna, 2000, vols. 1, 2.
4. Negwer, M. and Scharnow, H.-G., Organic-Chemical Drugs and Their Synonyms: An International Survey, Weinheim: Wiley, 2001, 8th ed.
5. Holmes, C.P., Chinn, J.P., Look, G.C., Gordon, E.M., and Gallop, M.A., J. Org. Chem., 1995, vol. 60, p. 7328.
6. Maclean, D., Holden, F., Davis, A.M., Scheuerman, R.A., Yanofsky, S., Holmes, C.P., Fitch, W.L., Tsutsui, K., Barrett, R.W., and Gallop, M.A., J. Comb. Chem., 2004, vol. 6, p. 196.
7. Fraga-Dubreuil, J. and Bazureau, J.P., Tetrahedron, 2003, vol. 59, p. 6121.
8. Lee, H.W., Kim, B.Y., Ahn, J.B., Son, H.J., Lee, J.W., Ahn, S.K., and Hong, C.I., Heterocycles, 2002, vol. 57, p. 2163.
9. Lohray, B.B., Bhushan, V., Reddy, A.S., Rao, P.B., Reddy, N.J., Harikishore, P., Haritha, N., Vikramadityan, R.K., Chakrabarti, R., Rajagopalan, R., and Katneni, K., J. Med. Chem., 1999, vol. 42, p. 2569.
10. Urban, F.J. and Moore, B.S., J. Heterocycl. Chem., 1992, vol. 29, p. 431.
11. Hulin, B., McCarthy, P.A., and Gibbs, E.M., Curr. Pharm. Design, 1996, vol. 2, p. 85.
12. Brown, F.C., Chem. Rev., 1961, vol. 61, p. 463.
13. Fujikawa, F., Hirai, K., Hirayama, T., Yoshikawa, T., Nakagawa, T., Naito, M., Tsukuma, S., Kamada, M., and Ohta, Y., Yakugaku Zasshi, 1969, vol. 89, p. 1099.
14. Laurent, D.R.St., Qi Gao, Dedong Wu, and SerranoWu, M.H., Tetrahedron Lett., 2004, vol. 45, p. 1907.
15. Obushak, N.D., Matiichuk, V.S., and Ganushchak, N.I., Russ. J. Org. Chem., 1998, vol. 34, p. 239.
16. Obushak, N.D., Matiichuk, V.S., Ganushchak, N.I., and Burlak, Yu.E., Khim. Geterotsikl. Soedin., 1998, p. 555.
17. Obushak, N.D., Lyakhovich, M.B., and Bilaya, E.E., Russ. J. Org. Chem., 2002, vol. 38, p. 38.
18. Vijayakumaran, N.G., J. Indian Chem. Soc., 1963, vol. 40, p. 953.
19. Ramsh, S.M., Smorygo, N.A., Khrabrova, E.S., and Ginak, A.I., Khim. Geterotsikl. Soedin., 1986, p. 544.
20. Ramsh, S.M., Solov'eva, S.Yu., and Ginak, A.I., Khim. Geterotsikl. Soedin., 1983, p. 761.
21. Ramsh, S.M., Smorygo, N.A., and Ginak, A.I., Khim. Geterotsikl. Soedin., 1984, p. 1066.
22. Obushak, N.D., Matiichuk, V.S., and Martyak, R.L., Khim. Geterotsikl. Soedin., 2003, p. 1019.

[^0]: * For communication XII, see [1].

